Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.276
Filter
1.
Discov Med ; 36(183): 646-654, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665014

ABSTRACT

Wilson's disease (WD) is an inherited disorder of copper metabolism in which pathological copper accumulation, mainly in the liver and the brain, leads to hepatic and/or neuropsychiatric signs and symptoms. Chelators and zinc salts can successfully induce negative copper balance in many patients; however, neurological deterioration may still be observed. This phenomenon can be divided into: (1) early 'paradoxical' neurological deterioration, which usually develops in the first 6 months of anti-copper treatment and may be commonly related to drug type, or (2) late neurological deterioration, which mostly occurs after 6 months of treatment and is often related either to non-compliance with treatment, overtreatment resulting in copper deficiency, or adverse drug reactions. Another explanation, especially for early neurological deterioration, is natural WD progression, which can be difficult to differentiate from drug-related deterioration, but usually leads to a worse outcome. There is still no consensus on how to define neurological deterioration in WD using scales or biomarkers, how to distinguish it from the natural disease progression, its risk factors, and optimal management. This narrative review, based on the current literature, aims to provide definitions, prevalence, pathological mechanisms and factors related to neurological deterioration, and also proposes schemes for diagnosis and treatment.


Subject(s)
Copper , Disease Progression , Hepatolenticular Degeneration , Hepatolenticular Degeneration/therapy , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/metabolism , Humans , Copper/metabolism , Chelating Agents/therapeutic use , Nervous System Diseases/etiology , Nervous System Diseases/diagnosis , Nervous System Diseases/therapy , Disease Management
2.
J Korean Med Sci ; 39(12): e115, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38565173

ABSTRACT

BACKGROUND: Wilson's disease (WD) is an autosomal recessive disorder in which copper (Cu) accumulates in organs, particularly in the liver and central nervous system. This study aimed to investigate the prevalence, incidence, and treatment patterns of WD patients in Korea. METHODS: National Health Insurance System (NHIS) claims data from 2010 to 2020 were analyzed. patients with WD as a primary or additional diagnosis at least once were identified using the International Classification of Diseases (ICD)-10 disease code E83.0 and a record for a registration program for rare intractable diseases in Korea. RESULTS: The average age- and sex-adjusted prevalence and incidence of WD between 2010 and 2020 were 3.06/100,000 and 0.11/100,000, respectively. The mean age of the patients with newly diagnosed WD was 21.0 ± 15.9 years. Among the 622 WD incident cases during the study period, 19.3% of the patients had liver cirrhosis and 9.2% had received liver transplantation. Psychological and neurological diseases were present in 40.7% and 48.1% of the patients, respectively. Regarding the diagnosis of WD, liver biopsy was performed in only 51.6% of new cases. D-penicillamine, trientine, or zinc were prescribed in 81.5% of the incident cases, and the treatment uptake rates decreased with increasing age. CONCLUSION: The prevalence of WD in Korea is 3.06/100,000 and approximately 1,800 patients use medical services annually. A significant proportion of patients are diagnosed at the cirrhotic stage and not treated with Cu-chelating therapeutics, suggesting the need for early diagnosis and adequate treatment to improve prognosis.


Subject(s)
Hepatolenticular Degeneration , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/epidemiology , Hepatolenticular Degeneration/therapy , Prevalence , Incidence , Chelating Agents/therapeutic use , Republic of Korea/epidemiology
3.
Microbiol Spectr ; 12(4): e0409523, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376363

ABSTRACT

Candida albicans, one of the most prevalent human fungal pathogens, causes diverse diseases extending from superficial infections to deadly systemic mycoses. Currently, only three major classes of antifungal drugs are available to treat systemic infections: azoles, polyenes, and echinocandins. Alarmingly, the efficacy of these antifungals against C. albicans is hindered both by basal tolerance toward the drugs and the development of resistance mechanisms such as alterations of the drug's target, modulation of stress responses, and overexpression of efflux pumps. Thus, the need to identify novel antifungal strategies is dire. To address this challenge, we screened 3,049 structurally-diverse compounds from the Boston University Center for Molecular Discovery (BU-CMD) chemical library against a C. albicans clinical isolate and identified 17 molecules that inhibited C. albicans growth by >80% relative to controls. Among the most potent compounds were CMLD013360, CMLD012661, and CMLD012693, molecules representing two distinct chemical scaffolds, including 3-hydroxyquinolinones and a xanthone natural product. Based on structural insights, CMLD013360, CMLD012661, and CMLD012693 were hypothesized to exert antifungal activity through metal chelation. Follow-up investigations revealed all three compounds exerted antifungal activity against non-albicans Candida, including Candida auris and Candida glabrata, with the xanthone natural product CMLD013360 also displaying activity against the pathogenic mould Aspergillus fumigatus. Media supplementation with metallonutrients, namely ferric or ferrous iron, rescued C. albicans growth, confirming these compounds act as metal chelators. Thus, this work identifies and characterizes two chemical scaffolds that chelate iron to inhibit the growth of the clinically relevant fungal pathogen C. albicansIMPORTANCEThe worldwide incidence of invasive fungal infections is increasing at an alarming rate. Systemic candidiasis caused by the opportunistic pathogen Candida albicans is the most common cause of life-threatening fungal infection. However, due to the limited number of antifungal drug classes available and the rise of antifungal resistance, an urgent need exists for the identification of novel treatments. By screening a compound collection from the Boston University Center for Molecular Discovery (BU-CMD), we identified three compounds representing two distinct chemical scaffolds that displayed activity against C. albicans. Follow-up analyses confirmed these molecules were also active against other pathogenic fungal species including Candida auris and Aspergillus fumigatus. Finally, we determined that these compounds inhibit the growth of C. albicans in culture through iron chelation. Overall, this observation describes two novel chemical scaffolds with antifungal activity against diverse fungal pathogens.


Subject(s)
Biological Products , Mycoses , Xanthones , Humans , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Drug Resistance, Fungal , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Aspergillus fumigatus , Iron , Xanthones/therapeutic use , Microbial Sensitivity Tests
4.
Redox Biol ; 70: 103076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340635

ABSTRACT

Wilson's disease (WD) is a genetic disorder that primarily leads to the pathological accumulation of copper (Cu) in the liver, causing an abnormal increase in reactive oxygen species (ROS). The prevailing clinical therapy for WD involves lifelong use of Cu chelation drugs to facilitate Cu excretion in patients. However, most available drugs exert severely side-effects due to their non-specific excretion of Cu, unsuitable for long-term use. In this study, we construct a prochelator that enables precise and controlled delivery of Cu chelator drugs to the liver in WD model, circumventing toxic side effects on other organs and normal tissues. This innovative prochelator rapidly releases the chelator and the fluorescent molecule methylene blue (MB) upon activation by ROS highly expressed in the liver of WD. The released chelator coordinates with Cu, efficiently aiding in Cu removal from the body and effectively inhibiting the pathological progression of WD.


Subject(s)
Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/pathology , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Reactive Oxygen Species , Copper
6.
Perit Dial Int ; 44(1): 66-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37131321

ABSTRACT

Calciphylaxis is an uncommon but life-threatening syndrome in end-stage kidney disease, characterised by painful medial and intimal calcification of the arterioles in the deep dermis and subcutaneous tissues. Intravenous sodium thiosulfate serves as an off-label but effective treatment in haemodialysis patients. However, this approach confers considerable logistical challenges for affected peritoneal dialysis patients. In this case series, we demonstrate that intraperitoneal administration can be a safe, convenient and long-term alternative.


Subject(s)
Calciphylaxis , Kidney Failure, Chronic , Peritoneal Dialysis , Humans , Peritoneal Dialysis/adverse effects , Calciphylaxis/drug therapy , Calciphylaxis/etiology , Chelating Agents/therapeutic use , Renal Dialysis , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/therapy
9.
J Med Toxicol ; 20(1): 49-53, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37843802

ABSTRACT

INTRODUCTION: For many years, the standard of care in the USA has been to treat acute lead encephalopathy with a combination parenteral dimercaprol (BAL) and CaNa2EDTA. We present a case of a pediatric patient with severe lead encephalopathy, complicated by cardiac arrest, who was treated with an alternative regimen when CaNa2EDTA was unavailable. CASE REPORT: A 24-month-old male was brought by ambulance to an emergency department (ED) with new onset seizures and sustained a cardiac arrest. An initial blood lead concentration returned at 263 mcg/dl. The hospital was unable to obtain CaNa2EDTA due to the nationwide shortage. For this reason, the patient was chelated with BAL IM for 12 days and dimercaptosuccinic acid (DMSA) for 28 days. He received a second 5-day course of BAL due to rebounding blood lead concentrations. Eight days after cardiac arrest, he was extubated; however, despite ongoing therapy, subsequent follow-up 2 months later demonstrated persistent cognitive deficits. DISCUSSION: The combination of DMSA and BAL was effective in rapidly decreasing whole blood lead concentrations. Drug shortages continue to have implications for the management of poisoned patients. This case highlights how shortages of chelating agents complicate patient care.


Subject(s)
Brain Diseases , Heart Arrest , Lead Poisoning , Humans , Male , Child , Child, Preschool , Lead , Edetic Acid/therapeutic use , Chelating Agents/therapeutic use , Succimer/therapeutic use , Brain Diseases/drug therapy , Heart Arrest/drug therapy
10.
Exp Neurol ; 373: 114657, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38141802

ABSTRACT

Neuronal neurofibrillary tangles containing Tau hyperphosphorylation proteins are a typical pathological marker of Alzheimer's disease (AD). The level of tangles in neurons correlates positively with severe dementia. However, how Tau induces cognitive dysfunction is still unknown, which leads to a lack of effective treatments for AD. Metal ions deposition occurs with tangles in AD brain autopsy. Reduced metal ion can improve the pathology of AD. To explore whether abnormally phosphorylated Tau causes metal ion deposition, we overexpressed human full-length Tau (hTau) in the hippocampal CA3 area of mice and primary cultured hippocampal neurons (CPHN) and found that Tau accumulation induced iron deposition and activated calcineurin (CaN), which dephosphorylates glycogen synthase kinase 3 beta (GSK3ß), mediating Tau hyperphosphorylation. Simultaneous activation of CaN dephosphorylates cyclic-AMP response binding protein (CREB), leading to synaptic deficits and memory impairment, as shown in our previous study; this seems to be a vicious cycle exacerbating tauopathy. In the current study, we developed a new metal ion chelator that displayed a significant inhibitory effect on Tau phosphorylation and memory impairment by chelating iron ions in vivo and in vitro. These findings provide new insight into the mechanism of memory impairment induced by Tau accumulation and develop a novel potential treatment for tauopathy in AD.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Animals , Mice , Mice, Transgenic , Alzheimer Disease/metabolism , tau Proteins/metabolism , Tauopathies/pathology , Memory Disorders/drug therapy , Memory Disorders/etiology , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Ions , Iron , Phosphorylation , Glycogen Synthase Kinase 3 beta/metabolism
11.
Am J Rhinol Allergy ; 38(2): 116-122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38105576

ABSTRACT

BACKGROUND: COVID-19 has been associated with olfactory disturbances in many infected patients. The increase in calcium levels in nasal secretions plays an essential role in the olfactory process with a desensitizing effect on olfactory receptor neurons and negative effects on odor transmission. Calcium chelating agents have the ability to bind calcium in nasal mucus and prevent the negative effects associated with calcium increase. OBJECTIVES: The aim of this work is to demonstrate the intra-nasal topical application of sodium phytate, an environmentally friendly, non-harmful calcium chelating agent, to reduce the adverse effects of calcium on olfactory function and improve olfactory dysfunction according to COVID-19. METHODS: Fifty-two patients with a previous COVID-19 and olfactory dysfunction lasting longer than 90 days were enrolled in a prospective, randomized, blinded, controlled clinical trial. Patients were divided into two equal groups: 26 patients received nasal spray containing 0.9% sodium chloride and 26 patients received nasal spray containing 1% sodium phytate. Olfactory function was measured before treatment and 1 month later using the Sniffin' Sticks test. Calcium content of nasal secretions was determined before and after treatment with an ion-selective electrode. RESULTS: A significant improvement from anosmia to hyposmia was demonstrated after the use of sodium phytate compared with no improvement after the use of sodium chloride. In addition, a decrease in the level of calcium in nasal secretions was observed after the use of sodium phytate. CONCLUSION: Sodium phytate has benefit role on improving the olfactory function after COVID-19.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , Calcium/metabolism , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Mucus , Nasal Sprays , Phytic Acid/pharmacology , Phytic Acid/therapeutic use , Prospective Studies , Smell/physiology , Sodium Chloride/therapeutic use
12.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138961

ABSTRACT

89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 µCi/µg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.


Subject(s)
Chelating Agents , Neoplasms , Humans , Mice , Animals , Chelating Agents/therapeutic use , Radioisotopes/therapeutic use , Positron-Emission Tomography/methods , Antibodies, Monoclonal/therapeutic use , Tissue Distribution , B7-H1 Antigen , Deferoxamine/therapeutic use , Neoplasms/drug therapy , Zirconium/pharmacokinetics , Cell Line, Tumor
13.
Radiat Res ; 200(6): 577-586, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37956868

ABSTRACT

This work describes an analysis, using a previously established chelation model, of the bioassay data collected from a worker who received delayed chelation therapy following a plutonium-238 inhalation. The details of the case have already been described in two publications. The individual was treated with Ca-DTPA via multiple intravenous injections and then nebulizations beginning several months after the intake and continuing for four years. The exact date and circumstances of the intake are unknown. However, interviews with the worker suggested that the intake occurred via inhalation of a soluble plutonium compound. The worker provided daily urine and fecal bioassay samples throughout the chelation treatment protocol, including samples collected before, during, and after the administration of Ca-DTPA. Unlike the previous two publications presenting this case, the current analysis explicitly models the combined biokinetics of the plutonium-DTPA chelate. Using the previously established chelation model, it was possible to fit the data through optimizing only the intake (day and magnitude), solubility, and absorbed fraction of nebulized Ca-DTPA. This work supports the hypothesis that the efficacy of the delayed chelation treatment observed in this case results mainly from chelation of cell-internalized plutonium by Ca-DTPA (intracellular chelation). It also demonstrates the validity of the previously established chelation model. As the bioassay data were modified to ensure data anonymization, the calculation of the "true" committed effective dose was not possible. However, the treatment-induced dose inhibition (in percentage) was calculated.


Subject(s)
Plutonium , Radiation Injuries , Humans , Plutonium/urine , Radiation Injuries/drug therapy , Radiation Injuries/etiology , Chelating Agents/therapeutic use , Chelating Agents/pharmacology , Pentetic Acid
14.
Physiol Res ; 72(S3): S277-S286, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37888971

ABSTRACT

Neuroblastoma represents 8-10 % of all malignant tumors in childhood and is responsible for 15 % of cancer deaths in the pediatric population. Aggressive neuroblastomas are often resistant to chemotherapy. Canonically, neuroblastomas can be classified according to the MYCN (N-myc proto-oncogene protein) gene amplification, a common marker of tumor aggressiveness and poor prognosis. It has been found that certain compounds with chelating properties may show anticancer activity, but there is little evidence for the effect of chelators on neuroblastoma. The effect of new chelators characterized by the same functional group, designated as HLZ (1-hydrazino phthalazine), on proliferation (WST-1 and methylene blue assay), cell cycle (flow cytometry), apoptosis (proliferation assay after use of specific pharmacological inhibitors and western blot analysis) and ROS production (fluorometric assay based on dichlorofluorescein diacetate metabolism) was studied in three neuroblastoma cell lines with different levels of MYCN amplification. The molecules were effective only on MYCN-non-amplified cells in which they arrested the cell cycle in the G0/G1 phase. We investigated the mechanism of action and identified the activation of cell signaling that involves protein kinase C.


Subject(s)
Neuroblastoma , Oncogene Proteins , Child , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/therapeutic use , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Oncogene Proteins/pharmacology , Nuclear Proteins/genetics , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Neuroblastoma/drug therapy , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Apoptosis , Cell Proliferation
15.
Curr Pharm Des ; 29(30): 2377-2386, 2023.
Article in English | MEDLINE | ID: mdl-37859328

ABSTRACT

The neurodegenerative disorders are age-related illnesses that cause the morphology or activity of neurons to deteriorate over time. Alzheimer's disease is the most frequent neurodegenerative illness in the long run. The rate of advancement might vary, even though it is a progressive neurological illness. Various explanations have been proposed, however the true etiology of Alzheimer's disease remains unclear. Most pharmacological interventions are based on the cholinergic theory, that is earliest idea. In accordance with the amyloid hypothesis, the buildup of beta-amyloid in brain regions is the primitive cause of illness. There is no proof that any one strategy is useful in avoiding Alzheimer's disease, though some epidemiological studies have suggested links within various modifiable variables, such as cardiovascular risk, diet and so on. Different metals like zinc, iron, and copper are naturally present in our bodies. In metal chelation therapy drugs are used to jam the metal ions from combining with other molecules in the body. Clioquinol is one of the metal chelation drugs used by researchers. Research on metal chelation is still ongoing. In the present review, we go over the latest developments in prevalence, incidence, etiology, or pathophysiology of our understanding of Alzheimer's disease. Additionally, a brief discussion on the development of therapeutic chelating agents and their viability as Alzheimer's disease medication candidates is presented. We also assess the effect of clioquinol as a potential metal chelator.


Subject(s)
Alzheimer Disease , Clioquinol , Humans , Alzheimer Disease/drug therapy , Clioquinol/pharmacology , Clioquinol/therapeutic use , Metals/therapeutic use , Chelating Agents/therapeutic use , Chelating Agents/pharmacology , Amyloid beta-Peptides , Copper
16.
Proc Natl Acad Sci U S A ; 120(45): e2309156120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903261

ABSTRACT

Cobalt-containing alloys are useful for orthopedic applications due to their low volumetric wear rates, corrosion resistance, high mechanical strength, hardness, and fatigue resistance. Unfortunately, these prosthetics release significant levels of cobalt ions, which was only discovered after their widespread implantation into patients requiring hip replacements. These cobalt ions can result in local toxic effects-including peri-implant toxicity, aseptic loosening, and pseudotumor-as well as systemic toxic effects-including neurological, cardiovascular, and endocrine disorders. Failing metal-on-metal (MoM) implants usually necessitate painful, risky, and costly revision surgeries. To treat metallosis arising from failing MoM implants, a synovial fluid-mimicking chelator was designed to remove these metal ions. Hyaluronic acid (HA), the major chemical component of synovial fluid, was functionalized with British anti-Lewisite (BAL) to create a chelator (BAL-HA). BAL-HA effectively binds cobalt and rescues in vitro cell vitality (up to 370% of cells exposed to IC50 levels of cobalt) and enhances the rate of clearance of cobalt in vivo (t1/2 from 48 h to 6 h). A metallosis model was also created to investigate our therapy. Results demonstrate that BAL-HA chelator system is biocompatible and capable of capturing significant amounts of cobalt ions from the hip joint within 30 min, with no risk of kidney failure. This chelation therapy has the potential to mitigate cobalt toxicity from failing MoM implants through noninvasive injections into the joint.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Hip Prosthesis/adverse effects , Hyaluronic Acid , Dimercaprol , Chelation Therapy , Prosthesis Failure , Arthroplasty, Replacement, Hip/adverse effects , Metals , Cobalt , Chelating Agents/therapeutic use , Ions
17.
Mol Nutr Food Res ; 67(23): e2300468, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863813

ABSTRACT

Copper is an essential trace metal for normal cellular functions; a lack of copper is reported to impair the function of important copper-binding enzymes, while excess copper could lead to cell death. Numerous studies have shown an association between dietary copper consumption or plasma copper levels and the incidence of diabetes/diabetes complications. And experimental studies have revealed multiple signaling pathways that are triggered by copper shortages or copper overload in diabetic conditions. Moreover, studies show that treated with copper chelators improve vascular function, maintain copper homeostasis, inhibit cuproptosis, and reduce cell toxicity, thereby alleviating diabetic neuropathy, retinopathy, nephropathy, and cardiomyopathy. However, the mechanisms reported in these studies are inconsistent or even contradictory. This review summarizes the precise and tight regulation of copper homeostasis processes, and discusses the latest progress in the association of diabetes and dietary copper/plasma copper. Further, the study pays close attention to the therapeutic potential of copper chelators and copper in diabetes and its complications, and hopes to provide new insight for the treatment of diabetes.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Trace Elements , Humans , Copper/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Diabetes Complications/prevention & control , Diabetes Complications/metabolism , Chelating Agents/therapeutic use , Chelating Agents/pharmacology
18.
Expert Rev Neurother ; 23(12): 1249-1259, 2023.
Article in English | MEDLINE | ID: mdl-37842984

ABSTRACT

INTRODUCTION: Wilson's disease (WD) is a potentially treatable, inherited disorder resulting from impaired copper metabolism. Pathological copper accumulation causes a range of symptoms, most commonly hepatic and a wide spectrum of neurological symptoms including tremor, dystonia, chorea, parkinsonism, dysphagia, dysarthria, gait and posture disturbances. To reduce copper overload, anti-copper drugs are used that improve liver function and neurological symptoms in up to 85% of patients. However, in some WD patients, treatment introduction leads to neurological deterioration, and in others, neurological symptoms persist with no improvement or improvement only after several years of treatment, severely affecting the patient's quality of life. AREAS COVERED: This review appraises the evidence on various pharmacological and non-pharmacological therapies, neurosurgical procedures and liver transplantation for the management of neurological WD symptoms. The authors also discuss the neurological symptoms of WD, causes of deterioration and present symptomatic treatment options. EXPERT OPINION: Based on case and series reports, current recommendations and expert opinion, WD treatment is focused mainly on drugs leading to negative copper body metabolism (chelators or zinc salts) and copper-restricted diet. Treatment of WD neurological symptoms should follow general recommendations of symptomatic treatment. Patients should be always considered individually, especially in the case of severe, disabling neurological symptoms.


Subject(s)
Dystonic Disorders , Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/therapy , Hepatolenticular Degeneration/diagnosis , Copper/metabolism , Copper/therapeutic use , Quality of Life , Chelating Agents/therapeutic use
19.
Radiat Environ Biophys ; 62(4): 483-495, 2023 11.
Article in English | MEDLINE | ID: mdl-37831188

ABSTRACT

A major challenge in modelling the decorporation of actinides (An), such as americium (Am), with DTPA (diethylenetriaminepentaacetic acid) is the fact that standard biokinetic models become inadequate for assessing radionuclide intake and estimating the resulting dose, as DTPA perturbs the regular biokinetics of the radionuclide. At present, most attempts existing in the literature are empirical and developed mainly for the interpretation of one or a limited number of specific incorporation cases. Recently, several approaches have been presented with the aim of developing a generic model, one of which reported the unperturbed biokinetics of plutonium (Pu), the chelation process and the behaviour of the chelated compound An-DTPA with a single model structure. The aim of the approach described in this present work is the development of a generic model that is able to describe the biokinetics of Am, DTPA and the chelate Am-DTPA simultaneously. Since accidental intakes in humans present many unknowns and large uncertainties, data from controlled studies in animals were used. In these studies, different amounts of DTPA were administered at different times after contamination with known quantities of Am. To account for the enhancement of faecal excretion and reduction in liver retention, DTPA is assumed to chelate Am not only in extracellular fluids, but also in hepatocytes. A good agreement was found between the predictions of the proposed model and the experimental results for urinary and faecal excretion and accumulation and retention in the liver. However, the decorporation from the skeletal compartment could not be reproduced satisfactorily under these simple assumptions.


Subject(s)
Pentetic Acid , Plutonium , Humans , Rats , Animals , Pentetic Acid/therapeutic use , Americium , Models, Biological , Chelating Agents/therapeutic use
20.
Environ Toxicol Pharmacol ; 104: 104283, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37775076

ABSTRACT

Retained lead fragments from nonfatal firearm injuries pose a risk of lead poisoning. While chelation is well-established as a lead poisoning treatment, it remains unclear whether chelation mobilizes lead from embedded lead fragments. Here, we tested whether 1) DMSA/succimer or CaNa2EDTA increases mobilization of lead from fragments in vitro, and 2) succimer is efficacious in chelating fragment lead in vivo, using stable lead isotope tracer methods in a rodent model of embedded fragments. DMSA was > 10-times more effective than CaNa2EDTA in mobilizing fragment lead in vitro. In the rodent model, succimer chelation on day 1 produced the greatest blood lead reductions, and fragment lead was not mobilized into blood. However, with continued chelation and over 3-weeks post-chelation, blood lead levels rebounded with mobilization of lead from the fragments. These findings suggest prolonged chelation will increase fragment lead mobilization post-chelation, supporting the need for long-term surveillance in patients with retained fragments.


Subject(s)
Firearms , Lead Poisoning , Wounds, Gunshot , Animals , Humans , Succimer , Lead/toxicity , Edetic Acid/pharmacology , Edetic Acid/therapeutic use , Rodentia , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Lead Poisoning/drug therapy , Lead Poisoning/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...